

LEVEL. UP TO THE MAX.

NivoRadar® 4000

RADAR SENSOR

Continuous level measurement of bulk solids and liquids across most industrial sectors with the compact 80 GHz FMCW radar. The non-contact radar sensor is ideal for use in potentially explosive areas.

NivoRadar® 4000

- 4° beam angle
- · High precision measurement
- · Potted PVDF housing
- Fast reaction time
- · Various mounting accessories
- · Easy installation and commissioning
- Excellent price/performance ratio
- Configuration via UWT LevelApp

TECHNICAL DATA

Housing PVDF IP66/ IP68, Type 6P

Certificates ATEX, IEC-Ex, cFMus, UKEX,

INMETRO, KC, FCC, IC

(Gas, dust explosion protection)

Measuring range 30 m

Measurement accuracy ± 2 mm

Pressure range -1 .. +3 bar (-14.5 .. +43.5 psi)

Supply voltage 12 - 35 V DC

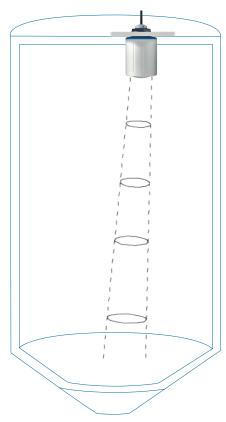
Process connection NPT 1", R 1", G 1"

Mounting flange > DN 80 / 3" Adjustable flange, adjustable seal

Process temperature -4

range

-40 °C .. +80 °C (-40 °F .. +176 °F)


Signal output 4...20 mA, 2-conductor

Communication HART

Sensitivity DK value ≥ 1,1

Material sensor PVDF, FDA registered

Frequency 80 GHz FMCW

Thanks to the high degree of ingress protection for bulk solids applications, the radar is ideal across all industrial sectors. The measurement is carried out up to the antenna with no blocking distance in the upper zone. He is also used outdoors on stockpiles.

Product configuration - Technical notes

Overview

Features

- · Continuous level measurement of solids and liquids in standard applications in nearly all industries with 80 GHz FMCW radar
- Suitable for measurement of solids in silos, segmented containers, open containers, open heaps and crushers
- Suitable for measurement of liquids in storage tanks and for water treatment
- Measurement through the wall of a plastic tank is possible as well

Measurement range

Up to 30 m (98.4 ft)

Mechanic

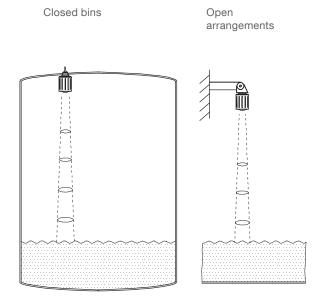
- Housing and antenna made of PVDF for high chemical resistance
- No aiming of the antenna is required
- Simple mounting due to threaded process connection
- Accessories for further mounting options

Service

- Plug and play system, simple installation and commissioning
- Programming / communication wireless with standard mobile device

Approvals

- Approval for use in Hazardous Locations (Dust and Gas)
- 2011/65/EU RoHS conform


Application

Solids measurement

Closed bins Open arrangements

Aiming of the antenna to the center of the silo allows measurement down to the bottom

Liquids measurement

Vertical installation without aiming of the antenna

010523

Continuous level measuring system NR 4000

Specification

Specification

Process	Measurement range	Up to 30m (98.4 ft)		
	Ambient temperature	-40 +80°C (-40 176°F)		
	Process temperature	-40 +80°C (-40 176°F)		
	Process overpressure	-1 +3,0 bar (-14.5 +43.5 psi)		
Process	Frequency	80 GHz FMCW		
	Beam angle	4°		
	Accuracy of measurement	Solids: depending on application Liquids: ≤ 2 mm (0.08") at distance >0,25m (0.82ft)		
	Response time	Max. 3 seconds (with sudden distance change)		
	Dielectric constant of material measured	≥ 1,1 (under ideal conditions)		
Mechanics	Ingress protection	Type 6P, IP66/68		
	Antenna and process connection	Material: PVDF, FDA certification (for foodstuff and pharmaceutical)		
	Connection cable	Fix mounted, colour black, with intrinsic safety:blue Material: PUR, sealing of cable inlet: Silicone		
Electronics	Power supply	4-20 mA 2-wire loop according to NE43 12 35 V DC		
	Programming / communication	Wireless: effective range typ. 25m (82ft) HART, version 7.0 (not progammable via PACTware/DTM)		
Approvals	General purpose	CE / cFMus / UKCA		
	Protection by enclosure	Zone 20, 20/21: ATEX / IEC-Ex/ cFMus / UKEX / INMETRO / KCs CI. II Div.1, CI. III: cFMus		
	Encapsulation	Zone 1, 1/2: ATEX / IEC-Ex/ cFMus / UKEX / INMETRO / KCs CI. I Div.2: cFMus		
	Non-incendive	Cl. I Div.2: cFMus		
	Intrinsically safe	Zone 0, 0/1, 20, 20/21: ATEX / IEC-Ex/ cFMus / UKEX / INMETRO / KCs Cl. I Div.1, Cl. II Div.1, Cl. III: cFMus		
	Radio approvals	According to country-specific standards for radar devices and wireless communication		

Wireless programming / communication

with standard mobile device via UWT LevelApp:

• Tablet or Smartphone (iOS- or Android-operating system)

Continuous level measuring system NR 4000 Product configuration - Technical notes

LEVEL. UP TO THE MAX.

Dimensions

(2.99")

Continuous level measuring system NR 4000

Detailed Ex-markings

Certificate pos.2

	Certificate	
Т	ATEX	II 2G, Ex ib mb IIC T4 Gb II 1D, 1/2D Ex ta, ta/tb IIIC T_{200} 121°C Da, Da/Db II 2D Ex tb IIIC T_{200} 134°C Db
	IEC-Ex	Ex ib mb IIC T4 Gb Ex ta, ta/tb IIIC T ₂₀₀ 121°C Da, Da/Db Ex tb IIIC T ₂₀₀ 134°C Db
	UKEX	II 2G, Ex ib mb IIC T4 Gb II 1D, 1/2D Ex ta, ta/tb IIIC T ₂₀₀ 121°C Da, Da/Db II 2D Ex tb IIIC T ₂₀₀ 134°C Db
S	ATEX	II 1G, 1/2G Ex ia IIC T4 Ga, Ga/Gb II 1D, 1/2D Ex ia IIIC T134 °C Da, Da/Db
	IEC-Ex	Ex ia IIC T4 Ga, Ga/Gb Ex ia IIIC T134 °C Da, Da/Db
	UKEX	II 1G, 1/2G Ex ia IIC T4 Ga, Ga/Gb II 1D, 1/2D Ex ia IIIC T134 °C Da, Da/Db
	cFMus	IS Class I, Div.1, Gp.A-D, IS Class II Div.1 Gp. EFG, Cl. III T4 Class I, Zn 0, 0/1 Ex ia IIC T4 Ga, Ga/Gb Zn 20, 20/21 Ex ia IIIC T134 °C Da, Da/Db
U	cFMus	CI I Div 2 Gp ABCD T4 Ta = -20°C+80°C AEx ib mb IIC T4 Gb Ta = -20°C to +80°C DIP Class II, Div. 1, Gp EFG, T4, Class III AEx ta IIIC (T121°C or T142°C) Da Ta = -20°C to +67°C AEx tb IIIC (T134°C or T155°C) Db Ta = -20°C to +80°C
Н	cFMus	NI Class I, Div 2, Gp. A-D T4 Ta = -20°C+80°C DIP Class II, Div 1, Gp. EFG, CI III T4 Ta = -20°C+80°C
F	INMETRO	Ex ia IIC T4 Ga, Ga/Gb Ex ia IIIC T134 °C Da, Da/Db
Е	INMETRO	Ex ib mb IIC T4 Gb Ex ta, ta/tb IIIC T ₂₀₀ 121°C Da, Da/Db Ex tb IIIC T ₂₀₀ 134°C Db
В	KCs	Ex ia IIC T4 Ga, Ga/Gb Ex ia IIIC T134 °C Da, Da/Db
D	KCs	Ex ib mb IIC T4 Gb Ex ta, ta/tb IIIC T ₂₀₀ 121°C Da, Da/Db Ex tb IIIC T ₂₀₀ 134°C Db

Continuous level measuring system **NR 4000**

Product configuration - Technical notes

Electrical installation

4-20 mA

4-20 mA 2-wire loop 12 .. 35 V DC Connecting cable 0,5 mm² (AWG 20)

With version "Intrinsically safe" (pos.2 S, X, F, B) connection is done to an approved intrinsically safe circiut (barrier):

U,=30 V I,=131 mA P,=983mW

The effective internal capacitance Ci and inductance Li depend on the length of the connection cable: Li = 0,65 μ H/m \cdot cable length in meter Ci = 180 pF/m \cdot cable length in meter

Extension of the cable:

Use of standard 2-wire cables. If electromagnetic interference is expected which is above the test values of EN 61326-1 for industrial areas, shielded cable should be used. Connect the cable screening to ground potential at one end on the supply side.

Technical information / Instruction manual

Contents

	page
About this document	2
For your safety	3
Product description	5
Technical data	8
Mounting	15
Connecting to power supply	23
Access protection	25
Setup with smartphone/tablet (Bluetooth)	27
Adjustment menu	29
Diagnostics and servicing	35
Dismount	45
Supplement	46

Safety instructions for Ex areas:

Take note of the Ex specific safety instructions for Ex applications. These instructions are attached as documents to each instrument with Ex approval and are part of the operating instructions.

Editing status: 2024-01-25

Technical information / Instruction manual

About this document

Function

This instruction provides all the information you need for mounting, connection and setup as well as important instructions for maintenance, fault rectification, safety and the exchange of parts. Please read this information before putting the instrument into operation and keep this manual accessible in the immediate vicinity of the device.

Target group

This instruction manual is directed to trained personnel. The contents of this manual must be made available to the qualified personnel and implemented.

Symbols used

Information, note, tip: This symbol indicates helpful additional information and tips for successful work.

Note: This symbol indicates notes to prevent failures, malfunctions, damage to devices or plants.

Caution: Non-observance of the information marked with this symbol may result in personal injury.

Warning: Non-observance of the information marked with this symbol may result in serious or fatal personal injury.

Danger: Non-observance of the information marked with this symbol results in serious or fatal personal injury.

Ex applications

This symbol indicates special instructions for Ex applications.

• List

The dot set in front indicates a list with no implied sequence.

1 Sequence of actions

Numbers set in front indicate successive steps in a procedure.

Disposal

This symbol indicates special instructions for disposal.

Technical information / Instruction manual

For your safety

Authorised personnel

All operations described in this documentation must be carried out only by trained and authorized personnel.

During work on and with the device, the required personal protective equipment must always be worn.

Appropriate use

NivoRadar 4100 is a sensor for continuous level measurement.

You can find detailed information about the area of application in chapter "Product description".

Operational reliability is ensured only if the instrument is properly used according to the specifications in this document as well as possible supplementary instructions.

Warning about incorrect use

Inappropriate or incorrect use of this product can give rise to application-specific hazards, e.g. vessel overfill through incorrect mounting or adjustment. Damage to property and persons or environmental contamination can result. Also, the protective characteristics of the instrument can be impaired.

General safety instructions

This is a state-of-the-art instrument complying with all prevailing regulations and directives. The instrument must only be operated in a technically flawless and reliable condition. The operating company is responsible for the trouble-free operation of the instrument. When measuring aggressive or corrosive media that can cause a dangerous situation if the instrument malfunctions, the operating company has to implement suitable measures to make sure the instrument is functioning properly.

The safety instructions in this instructions manual, the national installation standards as well as the valid safety regulations and accident prevention rules must be observed.

For safety and warranty reasons, any invasive work on the device beyond that described in this instructions manual may be carried out only by personnel authorised by us. Arbitrary conversions or modifications are explicitly forbidden. For safety reasons, only the accessory specified by us must be used.

To avoid any danger, the safety approval markings and safety tips on the device must also be observed.

The low transmitting power of the radar sensor is far below the internationally approved limits. No health impairments are to be expected with intended use. The band range of

Technical information / Instruction manual

For your safety

the measuring frequency can be found in chapter "Technical data".

Mode of operation - Radar signal

Country or region specific settings for the radar signals are determined via the mode. The operating mode must be set in the operating menu via the respective operating tool at the beginning of the setup.

Caution:

Operating the device without selecting the relevant mode constitutes a violation of the regulations of the radio approvals of the respective country or region.

Installation and operation in the USA and Canada

This information is only valid for USA and Canada. Hence the following text is only available in the English language. Installations in the US shall comply with the relevant requirements of the National Electrical Code (NEC - NFPA 70) (USA). Installations in Canada shall comply with the relevant requirements of the Canadian Electrical Code (CEC Part I) (Canada).

A Class 2 power supply unit has to be used for the installation in the USA and Canada.

Technical information / Instruction manual

Product description

Configuration

Scope of delivery

The scope of delivery encompasses:

- Radar sensor
- Counter nut G1¹⁾
- Information sheet "Documents and software" with:
 - Instrument serial number
 - QR code with link for direct scanning
- Information sheet "PINs and Codes" (with Bluetooth versions) with:
 - Bluetooth access code
- Information sheet "Access protection" (with Bluetooth versions) with:
 - Bluetooth access code
 - Emergency Bluetooth unlock code
 - Emergency device code

The further scope of delivery encompasses:

- Documentation
 - Ex-specific "Safety instructions" (with Ex versions)
 - Radio licenses
 - If necessary, further certificates

•

Information:

Optional instrument features are also described in this instructions manual. The respective scope of delivery results from the order specification.

Constituent parts

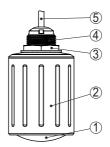


Fig. 1: Components of NivoRadar 4100

- 1 Radar antenna
- 2 Electronics housing
- 3 Counter nut
- 4 Mounting thread
- 5 Connection cable

Type label

The type label contains the most important data for identification and use of the instrument:

1) With G thread

Continuous level measurement

Series NR 4100

Product description

- Instrument type
- Information about approvals
- Configuration information
- Technical data
- Serial number of the instrument
- QR code for device identification
- Numerical code for Bluetooth access (optional)
- Manufacturer information

Principle of operation

Application area

NivoRadar 4100 is a radar sensor for non-contact, continuous level measurement. It is suitable for liquids and solids in practically all industries.

Functional principle

The instrument emits a continuous, frequency-modulated radar signal through its antenna. The emitted signal is reflected by the medium and received by the antenna as an echo with modified frequency. The frequency change is proportional to the distance and is converted into the level.

Adjustment

Wireless adjustment

Devices with integrated Bluetooth module can be adjusted wirelessly via smartphone/tablets (iOS or Android operating system).

Fig. 2: Wireless connection to standard operating devices with integrated Bluetooth LE

- 1 Sancor
- 2 Smartphone/Tablet

Packaging, transport and storage

Packaging

Your instrument was protected by packaging during transport. Its capacity to handle normal loads during transport is assured by a test based on ISO 4180.

NivoRadar[®]

Continuous level measurement **Series NR 4100**

Product description

The packaging consists of environment-friendly, recyclable cardboard. For special versions, PE foam or PE foil is also used. Dispose of the packaging material via specialised recycling companies.

Transport

Transport must be carried out in due consideration of the notes on the transport packaging. Nonobservance of these instructions can cause damage to the device.

Transport inspection

The delivery must be checked for completeness and possible transit damage immediately at receipt. Ascertained transit damage or concealed defects must be appropriately dealt with.

Storage

Up to the time of installation, the packages must be left closed and stored according to the orientation and storage markings on the outside.

Unless otherwise indicated, the packages must be stored only under the following conditions:

- · Not in the open
- Dry and dust free
- Not exposed to corrosive media
- Protected against solar radiation
- Avoiding mechanical shock and vibration

Storage and transport temperature

- Storage and transport temperature see chapter "Supplement Technical data Ambient conditions"
- Relative moisture 20 ... 85 %

Continuous level measurement Series NR 4100 Technical information / Instruction manual

Technical data

Technical data

Note for approved instruments

The technical data in the respective safety instructions which are included in delivery are valid for approved instruments (e.g. with Ex approval). These data can differ from the data listed herein, for example regarding the process conditions or the voltage supply.

All approval documents can be downloaded from our homepage.

Base state and souther	
Materials and weights	
Materials, wetted parts	
– Antenna	PVDF
- Counter nut¹)	PP
Materials, non-wetted parts	
– Housing	PVDF
– Cable entry seal	FKM
- Connection cable	PUR
Weight	
- Instrument	0.7 kg (1.543 lbs)
- Connection cable	0.1 kg/m
Mounting connection	Thread G1, R1, 1 NPT
Torques	
Torque counter nut max.	7 Nm (5.163 lbf ft)
Switch-on phase	
Run-up time for U _B = 12 V DC, 18 V DC, 24 V DC	< 15 s
Starting current for run-up time	≤ 3.6 mA

Technical information / Instruction manual

UWT

Technical data

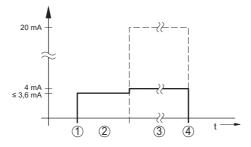


Fig. 3: Run-up time and measured value output

- 1 U_oOn
- 2 Run-up time
- 3 Measured value output
- 4 U_B Off

Power consumption

	Operating voltage			
Sensor current	12 V DC	18 V DC	24 V DC	
≤ 3.6 mA	< 45 mW	< 65 mW	< 90 mW	
4 mA	< 50 mW	< 75 mW	< 100 mW	
20 mA	< 245 mW	< 370 mW	< 485 mW	

Input variable

Measured variable

The measured variable is the distance between the antenna edge of the sensor and the medium surface. The antenna edge is also the reference plane for the measurement.

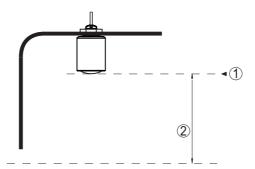
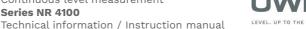



Fig. 4: Data of the input variable

- 1 Reference plane
- 2 Measured variable, max. measuring range

Continuous level measurement

Technical data

Max. measuring range1) 30 m (98.43 ft)

Recommended measuring range²⁾ up to 20 m (65.62 ft)

blocking distance3)

- Modes 1, 2, 4 0 mm (0 in)

- Mode 3 ≥ 250 mm (9.843 in)

Output variable

Output signal 4 ... 20 mA/HART

Range of the output signal 3.8 ... 20.5 mA/HART (default setting)

Signal resolution 0.3 µA

Resolution, digital 1 mm (0.039 in)

Fault signal, current output (adjust- ≤ 3.6 mA, ≥ 21 mA, last valid measured value

able)

22 mA Max. output current

Starting current ≤ 3.6 mA; ≤ 10 mA for 5 ms after switching on

Load See load resistance under Power supply

Damping (63 % of the input vari-

able), adjustable

0 ... 999 s

HART output values4)

- PV (Primary Value) Lin. percent - SV (Secondary Value) Distance

- TV (Third Value) Measurement reliability - QV (Fourth Value) Electronics temperature

Fulfilled HART specification 7.0

Further information on Manufacturer See website of FieldComm Group

ID, Device ID, Device Revision

Deviation (according to DIN EN 60770-1)

Process reference conditions according to DIN EN 61298-1

- Temperature +18 ... +30 °C (+64 ... +86 °F)

- Relative humidity 45 ... 75 %

- Air pressure 860 ... 1060 mbar/86 ... 106 kPa (12.5 ... 15.4 psig)

¹⁾ Depending on application and medium

²⁾ With bulk solids

³⁾ Depending on the operating conditions

⁴⁾ The values for SV, TV and QV can be assigned as required.

Continuous level measurement

Series NR 4100
Technical information / Instruction manual

Technical data

Installation reference conditions

Distance to installationsReflectorReflectorFlat plate reflector

- False reflections Biggest false signal, 20 dB smaller than the useful

signal

Deviation with liquids ≤ 2 mm (meas. distance > 0.25 m/0.8202 ft)

Non-repeatability¹) ≤ 2 mm

Deviation with bulk solids The values depend to a great extent on the ap-

plication. Binding specifications are thus not

possible.

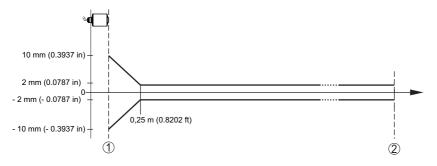


Fig. 5: Deviation under reference conditions²⁾

- 1 Antenna edge, reference plane
- 2 Recommended measuring range

Variables influencing measurement accuracy3)

Specifications apply to the digital measured value

Temperature drift - Digital value < 3 mm/10 K, max. 5 mm

Specifications apply also to the current output

Temperature drift - Current output < 0.03 %/10 K or max. 0.3 % relating to the 16.7 mA span

Deviation in the current output due $\,<$ 15 μ A to digital/analogue conversion

¹⁾ Already included in the meas. deviation

²⁾ In case of deviations from reference conditions, the offset due to installation can be up to ± 4 mm. This offset can be compensated by the adjustment.

³⁾ Determination of the temperature drift acc. to the limit point method

Continuous level measurement Series NR 4100 Technical information / Instruction manual

Technical data

Additional measurement deviation through electromagnetic interference

According to NAMUR NE 21According to EN 61326-1None

- According to IACS E10 (shipbuild- $< 250 \mu A$ ing)/IEC 60945

Characteristics and performance data

Measuring frequency W-band (80 GHz technology)

Measuring cycle time¹⁾ \leq 250 ms Step response time²⁾ \leq 3 s

Beam angle³⁾ 4°

Emitted HF power (depending on the parameter setting)4)

– Average spectral transmission

-3 dBm/MHz EIRP

power density

- Max. spectral transmission power +34 dBm/50 MHz EIRP

density

– Max. power density at a distance $\,$ < 3 μ W/cm²

of 1 m

Ambient conditions

Ambient temperature -40 ... +80 °C (-40 ... +176 °F)

Storage and transport temperature -40 ... +80 °C (-40 ... +176 °F)

Mechanical environmental conditions

Vibrations (oscillations)

Class 4M8 acc. to IEC 60721-3-4 (5 g, 4 ... 200 Hz)

Impacts (mechanical shock)

Class 6M4 acc. to IEC 60721-3-6 (50 g, 2.3 ms)

Impact resistance IK07 acc. to IEC 62262

Process conditions

For the process conditions, please also note the specifications on the type label. The lowest value (amount) always applies.

¹⁾ With operating voltage U_D ≥ 24 V DC

²⁾ Time span after a sudden distance change from 1 m to 5 m until the output signal reaches 90 % of the final value for the first time (IEC 61298-2). Valid with operating voltage U₂ ≥ 24 V DC.

³⁾ Outside the specified beam angle, the energy level of the radar signal is 50% (-3 dB) less.

⁴⁾ EIRP: Equivalent Isotropic Radiated Power

Technical information / Instruction manual

Technical data

Process temperature	-40 +80 °C (-40 +176 °F)
Process pressure	-1 3 bar (-100 300 kPa/-14.5 43.51 psig)

Process pressure	-1 3 bar (-100 300 kPa/-14.5 43.51 psig)		
Electromechanical data			
Cable entry	Fixed connection		
Connection cable			
– Configuration	Wires, screen braiding, sheathing		
- Wire cross-section	0.5 mm² (AWG 20)		
– Min. bending radius (at 25 °C/77 °F)	25 mm (0.984 in)		
- Diameter	6 8 mm (0.236 0.315 in)		
– Wire isolating and cable cover	PUR		
- Colour	Black		
– Colour - Ex i version	Blue		
– Flame retardant according to	IEC 60332-1-2, UL 1581 (Flametest VW-1)		
– UV resistance cable cover	Colour black: yes Colour blue: no		

Bluetooth interface		
Bluetooth standard	Bluetooth 5.0	
Frequency	2.402 2.480 GHz	
Max. emitted power	+2.2 dBm	
Max. number of participants	1	
Effective range	typically 25 m (82 ft)¹)	

Adjustment		
Smartphone/Tablet	Adjustment ann	

Voltage supply				
Operating voltage U _B				
- at 4 mA	12 35 V DC			
– at 20 mA	9 35 V DC			
Reverse voltage protection	Integrated			
Permissible residual ripple				
– for 12 V < $U_{\rm B}$ < 18 V	≤ 0.7 V _{eff} (16 400 Hz)			
$-$ for 18 V < U $_{\rm B}$ < 35 V	≤ 1 V _{eff} (16 400 Hz)			

¹⁾ Depending on the local conditions

Technical information / Instruction manual

Technical data

Load resistor

- Calculation $(U_R - U_{min})/0.022 A$

- Example - with $U_0 = 24 \text{ V DC}$ (24 V - 12 V)/0.022 A = 545 Ω

Overvoltage protection

Dielectric strength against metallic > 10 kV

mounting parts

Overvoltage resistance (test impulse > 1000 V

voltages 1.2/50 μ s at 42 Ω)

and comprehensive insulation measures generally

not necessary.

Electrical protective measures

Potential separation Electronics potential free up to 500 V AC

Protection rating IP66/IP68 (3 bar, 24 h) acc. to IEC 60529,

Type 6P acc. to UL 50

Altitude above sea level 5000 m (16404 ft)

Protection class III
Pollution degree 4

Dimensions

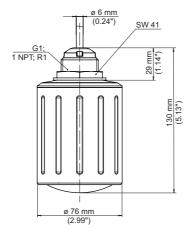


Fig. 6: Dimensions NivoRadar 4100

Mounting

General instructions

Ambient conditions

The instrument is suitable for standard and extended ambient conditions acc. to DIN/EN/BS EN/IEC/ANSI/ISA/UL/CSA 61010-1. It can be used indoors as well as outdoors.

Process conditions

Note:

For safety reasons, the instrument must only be operated within the permissible process conditions. You can find detailed information on the process conditions in chapter "Technical data" of the operating instructions or on the type label.

Hence make sure before mounting that all parts of the instrument exposed to the process are suitable for the existing process conditions.

These are mainly:

- Active measuring component
- Process fitting
- Process seal

Process conditions in particular are:

- Process pressure
- Process temperature
- Chemical properties of the medium
- Abrasion and mechanical influences

Mounting versions

Mounting bracket

For the wall mounting, a mounting bracket with opening for thread G1 is recommended. The mounting of the device in the bracket is carried out via the supplied G1 counter nut of plastic. Take note of chapter "Mounting instructions" for the recommended distance to the wall.

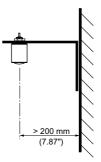


Fig. 7: Mounting via a mounting bracket

Technical information / Instruction manual

Mounting

Polarisation

Mounting instructions

Radar sensors for level measurement emit electromagnetic waves. The polarization is the direction of the electrical component of these waves.

The position of the polarisation is in the middle of the type label on the instrument.

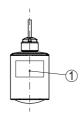


Fig. 8: Position of the polarisation

1 Middle of the type label

Note:

When the device is rotated, the direction of polarization changes and hence the influence of the false echo on the measured value. Please keep this in mind when mounting or making changes later.

Installation position

When mounting the device, keep a distance of at least 200 mm (7.874 in) from the vessel wall. If the device is installed in the center of dished or round vessel tops, multiple echoes can arise. However, these can be suppressed by an appropriate adjustment (see chapter "Setup").

If you cannot maintain this distance, you should carry out a false signal suppression during setup. This applies particularly if buildup on the vessel wall is expected. In such cases, we recommend repeating the false signal suppression at a later date with existing buildup.

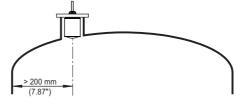


Fig. 9: Mounting of the radar sensor on round vessel tops

In vessels with conical bottom it can be advantageous to mount the device in the centre of the vessel, as measurement is then possible down to the bottom.

Mounting

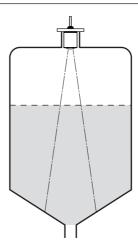


Fig. 10: Mounting of the radar sensor on vessels with conical bottom

Reference plane

The centre of the antenna lens is the beginning of the measuring range and at the same time the reference plane for the min./max. adjustment, see following diagram:

Fig. 11: Reference plane 1 Reference plane

Inflowing medium

Do not mount the instruments in or above the filling stream. Make sure that you detect the medium surface, not the inflowing product.

Mounting

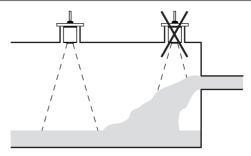


Fig. 12: Mounting of the radar sensor with inflowing medium

Nozzle

For nozzle mounting, the nozzle should be as short as possible and its end rounded. This reduces false reflections from the nozzle.

The antenna edge should protrude at least 5 mm (0.2 in) out of the nozzle.

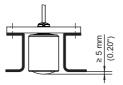


Fig. 13: Recommended socket mounting of NivoRadar 4100

If the reflective properties of the medium are good, you can mount NivoRadar 4100 on sockets longer than the antenna. The socket end should be smooth and burr-free, if possible also rounded.

i

Note:

When mounting on longer nozzles, we recommend carrying out a false signal suppression (see chapter "Parameter adjustment").

You will find recommended values for socket heights in the following illustration or the table. The values come from typical applications. Deviating from the proposed dimensions, also longer sockets are possible, however the local conditions must be taken into account.

Technical information / Instruction manual

Mounting

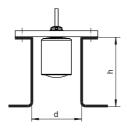


Fig. 14: Socket mounting with deviating socket dimensions

Socket diameter d		Socket length h		
80 mm	3"	≤ 300 mm	≤ 11.8 in	
100 mm	4"	≤ 400 mm	≤ 15.8 in	
150 mm	6"	≤ 600 mm	≤ 23.6 in	

Vessel installations

The mounting location of the radar sensor should be a place where no other equipment or fixtures cross the path of the radar signals.

Vessel installations, such as e.g. ladders, limit switches, heating spirals, struts, etc., can cause false echoes and impair the useful echo. Make sure when planning your measuring point that the radar sensor has a "clear view" to the measured product.

In case of existing vessel installations, a false signal suppression should be carried out during setup.

If large vessel installations such as struts or supports cause false echoes, these can be attenuated through supplementary measures. Small, inclined sheet metal baffles above the installations "scatter" the radar signals and prevent direct interfering reflections.

Fig. 15: Cover flat, large-area profiles with deflectors

Alignment - Liquids

In liquids, direct the device as perpendicular as possible to the medium surface to achieve optimum measurement results.

Mounting

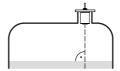


Fig. 16: Alignment in liquids

Orientation - Bulk solids

In order to measure as much of the vessel volume as possible, the device should be aligned so that the radar signal reaches the lowest level in the vessel. In a cylindrical silo with conical outlet, the sensor is mounted anywhere from one third to one half of the vessel radius from the outside wall (see following drawing).

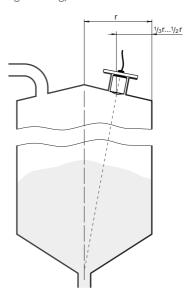


Fig. 17: Mounting position and orientation

Orientation

Due to respective socket design or with an alignment device, the device can be easily aligned to the vessel centre. The necessary angle of inclination depends on the vessel dimensions. It can be easily checked with a suitable bubble tube or mechanic's level on the sensor.

Technical information / Instruction manual

Mounting

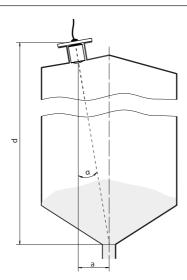
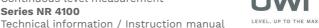


Fig. 18: Proposal for installation after orientation NivoRadar 4100

The following table shows the necessary angle of inclination. It depends on the measuring distance and the distance "a" between vessel centre and installation position.

Distance d (m)	2°	4°	6°	8°	10°
2	0.1	0.1	0.2	0.3	0.4
4	0.1	0.3	0.4	0.6	0.7
6	0.2	0.4	0.6	0.8	1.1
8	0.3	0.6	0.8	1.1	1.4
10	0.3	0.7	1.1	1.4	1.8
15	0.5	1	1.6	2.1	2.6
20	0.7	1.4	2.1	2.8	3.5
25	0.9	1.7	2.6	3.5	4.4
30	1	2.1	3.2	4.2	5.3

Example:


In a vessel with 20 m height, the installation position of the sensor is 1.4 m away from the vessel center.

The necessary angle of inclination of 4° can be read out from this table.

NivoRadar[®]

Continuous level measurement

Agitators

Mounting

If there are agitators in the vessel, a false signal suppression should be carried out with the agitators in motion. This ensures that the interfering reflections from the agitators are saved with the blades in different positions.

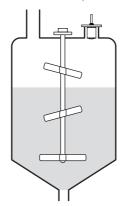


Fig. 19: Agitators

Foam generation

Through the action of filling, stirring and other processes in the vessel, compact foams which considerably damp the emitted signals may form on the medium surface.

Note:

If foams lead to measurement errors, you should use the biggest possible radar antennas or as an alternative, sensors with guided radar.

Technical information / Instruction manual

Connecting to power supply

Preparing the connection

Safety instructions

Always keep in mind the following safety instructions:

Carry out electrical connection by trained, qualified personnel authorised by the plant operator

Warning:

Only connect or disconnect in de-energized state.

Voltage supply

The data for power supply are specified in chapter "Technical data".

Note:

Power the instrument via an energy-limited circuit (power max. 100 W) acc. to IEC 61010-1, e.g.

- Class 2 power supply unit (acc. to UL1310)
- SELV power supply unit (safety extra-low voltage) with suitable internal or external limitation of the output current

Keep in mind the following additional factors that influence the operating voltage:

- Lower output voltage of the power supply unit under nominal load (e.g. with a sensor current of 20.5 mA or 22 mA in case of fault signal)
- Influence of additional instruments in the circuit (see load values in chapter "*Technical data*")

Connection cable

The device is supplied with a fixed connected cable. If an extension is required, a standard two-wire cable can be used.

If electromagnetic interference is expected which is above the test values of EN 61326-1 for industrial areas, shielded cable should be used.

Shielded cable generally necessary in HART multidrop mode.

Cable screening and grounding

We recommend to connect the cable screening to ground potential at one end on the supply side when using shielded cable.

Wiring plan

Wire assignment, connection cable

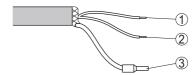


Fig. 20: Wire assignment in permanently connected connection cable

Continuous level measurement Series NR 4100 Technical information / Instruction manual

Connecting to power supply

	Wire colour	Function	Polarity
1	Brown	Voltage supply, signal output	Plus (+)
2	Blue	Voltage supply, signal output	Minus (-)
3		Shielding	

Switch-on phase

After connection to the power supply, the device carries out a self-test:

- Internal check of the electronics
- Output signal is set to failure

The current measured value is then output on the signal cable.

Access protection

Bluetooth radio interface

Devices with a Bluetooth radio interface are protected against unwanted access from outside. This means that only authorized persons can receive measured and status values and change device settings via this interface.

Bluetooth access code

A Bluetooth access code is required to establish Bluetooth communication via the adjustment tool (smartphone/tablet/notebook). This code must be entered once when Bluetooth communication is established for the first time in the adjustment tool. It is then stored in the adjustment tool and does not have to be entered again.

The Bluetooth access code is individual for each device. It is printed on the device housing with Bluetooth. In addition, it is supplied with the device in the information sheet "PINs and Codes" In addition, the Bluetooth access code can be read out via the display and adjustment unit, depending on the device version.

The Bluetooth access code can be changed by the user after the first connection is established. If the Bluetooth access code is entered incorrectly, the new entry is only possible after a waiting period has elapsed. The waiting time increases with each further incorrect entry.

Emergency Bluetooth unlock code

The emergency Bluetooth access code enables Bluetooth communication to be established in the event that the Bluetooth access code is no longer known. It can't be changed. The emergency Bluetooth access code can be found in information sheet "Access protection". If this document is lost, the emergency Bluetooth access code can be retrieved from your personal contact person after legitimation. The storage and transmission of Bluetooth access codes is always encrypted (SHA 256 algorithm).

Protection of the parameterization

The settings (parameters) of the device can be protected against unwanted changes. The parameter protection is deactivated on delivery, all settings can be made.

Device code

To protect the parameterization, the device can be locked by the user with the aid of a freely selectable device code. The settings (parameters) can then only be read out, but not changed. The device code is also stored in the adjustment tool. However, unlike the Bluetooth access code, it must be re-entered for each unlock. When using the adjustment app, the stored device code is then suggested to the user for unlocking.

Technical information / Instruction manual

Access protection

Emergency device code

The emergency device code allows unlocking the device in case the device code is no longer known. It can't be changed. The emergency device code can also be found on the supplied information sheet "Access protection". If this document is lost, the emergency device code can be retrieved from your personal contact person after legitimation. The storage and transmission of the device codes is always encrypted (SHA 256 algorithm).

Technical information / Instruction manual

Setup with smartphone/tablet (Bluetooth)

Preparations

System requirements

Make sure that your smartphone/tablet meets the following system requirements:

- · Operating system: iOS 8 or newer
- Operating system: Android 5.1 or newer
- Bluetooth 4.0 LE or newer

Download the adjustment app from the "Apple App Store", "Google Play Store" or "Baidu Store" to your smartphone or tablet.

Connecting

Connecting

Start the adjustment app and select the function "Setup". The smartphone/tablet searches automatically for Bluetooth-capable instruments in the area.

The message "Connecting ..." is displayed.

The devices found are listed and the search is automatically continued.

Select the requested instrument in the device list.

Authenticate

When establishing the connection for the first time, the operating tool and the sensor must authenticate each other. After the first correct authentication, each subsequent connection is made without a new authentication query.

Enter Bluetooth access code

For authentication, enter the 6-digit Bluetooth access code in the next menu window. You can find the code on the outside of the device housing and on the information sheet "Pins and Codes" in the device packaging.

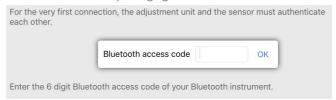


Fig. 21: Enter Bluetooth access code

Note

If an incorrect code is entered, the code can only be entered again after a delay time. This time gets longer after each incorrect entry.

The message "Waiting for authentication" is displayed on the smartphone/tablet.

Connected

After connection, the sensor adjustment menu is displayed on the respective adjustment tool.

Technical information / Instruction manual

Setup with smartphone/tablet (Bluetooth)

If the Bluetooth connection is interrupted, e.g. due to a too large distance between the two devices, this is displayed on the adjustment tool. The message disappears when the connection is restored.

Change device code

Parameter adjustment of the device is only possible if the parameter protection is deactivated. When delivered, parameter protection is deactivated by default and can be activated at any time.

It is recommended to enter a personal 6-digit device code. To do this, go to menu "Extended functions", "Access protection", menu item "Protection of the parameter adjustment".

Parameter adjustment

Enter parameters

The sensor adjustment menu is divided into two areas, which are arranged next to each other or one below the other, depending on the adjustment tool.

- Navigation section
- Menu item display

The selected menu item can be recognized by the colour change.

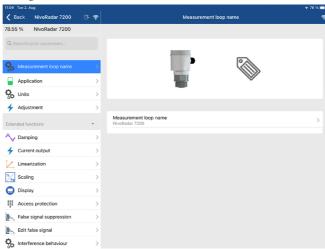


Fig. 22: Example of an app view - Setup measured values

Enter the requested parameters and confirm via the keyboard or the editing field. The settings are then active in the sensor. Close the app to terminate connection.

Continuous level measurement Series NR 4100 Technical information / Instruction manual

Adjustment menu

Menu overview

Start image

Device information	Actual measured values	Device status
Device name, software version, serial number	Percent, filling height, distance, measurement reliability, electronics temperature, meas. rate etc.	OK, error indication

Basic functions

Menu item	Selection	Basic settings	
Measurement loop name	Alphanumeric characters	Sensor	
Application liquid	Storage tank, agitator tank, dosing tank, pumping station/pump shaft, rain overflow basin, tank/collection basin, plastic tank (measurement through tank top), mobile plastic tank (IBC), level measurement in waters, flow measurement flume/overflow, demonstration	Storage tank	
Application bulk solid	Silo (slim and high), bunker (large volume), stock- pile (point measurement/profile detection), crusher, demonstration	Silo (slender and high)	
Units	Distance unit of the device Temperature unit of the instrument	Distance in m Temperature in °C	
Adjustment	Max. adjustment (distance A) Min. adjustment (distance B)	Max. adjustment 0,000 m Min. adjustment 30,000 m	

Extended functions

Menu item	Selection	Basic settings
Damping	Integration time	0 s
Current output	Output characteristics	0 100 % correspond to 4 20 mA
	Current range	3.8 20.5 mA
	Reaction when malfunctions occur	< 3.6 mA
Linearisation	Linearization type	Linear
Scaling	Scaling size	Volume
	Scaling unit	L
	Scaling format	
	100 % correspond to	100 l
	0 % correspond to	0 L

Adjustment menu

Menu item	Selection	Basic settings
Display	Menu language	-
	Displayed value	Distance
	Backlight	On
Access protection	Bluetooth access code	-
	Protection of the parameterization	Deactivated
False signal suppression	Create new, extend, delete, manual entry	0 m
	Sounded distance to the medium	0 m
Interference behaviour	Last measured value, maintenance message, fault signal	Last measured value
	Time until fault signal	15 s
HART variables	First HART value (PV)	Lin. percent
	Second HART value (SV)	Distance
	Third HART value (TV)	Measurement reli-
	Fourth HART value (QV)	ability
	Long TAG	Electronics tem-
	Message	perature
Reset	Delivery status, basic settings	-
Mode	Mode 1: EU, Albania, Andorra, Azerbaijan, Australia, Belarus, Bosnia and Herzegovina, Canada, Liechtenstein, Moldavia, Monaco, Montenegro, Morocco, New Zealand, Northern Macedonia, Norway, San Marino, Saudi Arabia, Serbia, South-Africa, Switzerland, Turkey, Ukraine, United Kingdom, USA	Mode 1
	Mode of operation 2: Brazil, Japan, South Korea, Taiwan, Thailand	
	Mode of operation 3: India, Malaysia	
	Mode of operation 4: Russia, Kazakhstan	
Status signals	Function check	On
	Maintenance required	Off
	Out of specification	Off

Diagnostics

Menu item	Selection	Basic settings
Status	Device status	_
	Parameter modification counter	
	Measured value status	
	Status output	
	HART Device Status	
	Status additional measured values	

Technical information / Instruction manual

Adjustment menu

Menu item	Selection	Basic settings
Echo curve	Indication of echo curve	-
Peak indicator	Peak indicator distance, measurement reliability, meas. rate, electronic temperature	-
Measured values	Measured values Additional measured values Outputs	-
Sensor information	Device name, serial number, hardware/software version, device revision, factory calibration date	-
Sensor characteristics	Sensor features from order text	-
Simulation	Measured value Simulation value	-

Description of the applications

Application

This menu item enables you to optimally adapt the sensor to the application, the place of use and the measuring conditions. The adjustment possibilities depend on the selection made under "Medium", "Liquid" or "Bulk solid".

The vessels as well as the measuring and process conditions are described in the following as an overview.

Application - liquid

With "Liquid", the applications are based on the following features, to which the measuring characteristic of the sensor is adjusted in particular:

Storage tank

- Vessel:
 - Large volume
 - Upright cylindrical, horizontal round
- Process/measurement conditions:
 - Slow filling and emptying
 - Smooth medium surface
 - Multiple reflections from dished vessel ceiling
 - Condensation

Stirrer vessel

- Vessel:
 - Large agitator blades of metal
 - Installations like flow breakers, heating spirals
 - Nozzle
- Process/measurement conditions:
 - Frequent, fast to slow filling and emptying
 - Strongly agitated surface, foam and strong vortex generation
 - Multiple reflections through dished vessel ceiling

NivoRadar[®]

Continuous level measurement

Series NR 4100

Adjustment menu

- Condensation, buildup on the sensor
- Further recommendations
 - False signal suppression when the agitator is running via the operating tool

Dosing vessel

- Vessel:
 - Small vessels
- Process/measurement conditions:
 - Frequent and fast filling/emptying
 - Tight installation situation
 - Multiple reflections through dished vessel ceiling
 - Product buildup, condensate and foam generation

Pumping station/Pump shaft

- Process/measurement conditions:
 - Partly strongly agitated surface
 - Installations such as pumps and ladders
 - Multiple reflections through flat vessel ceiling
 - Dirt and grease deposits on shaft wall and sensor
 - Condensation on the sensor
- Further recommendations
 - False signal suppression via the operating tool

Overflow basin

- Vessel
 - Large volume
 - Partly installed underground
- Process/measurement conditions:
 - Partly strongly agitated surface
 - Multiple reflections through flat vessel ceiling
 - Condensation, dirt deposits on the sensor
 - Flooding of the sensor antenna

Vessel/Collecting basin

- Vessel:
 - Large volume
 - Upright cylindrical or rectangular
- Process/measurement conditions:
 - Slow filling and emptying
 - Smooth medium surface
 - Condensation

Plastic tank (measurement through the vessel top)

- Process/measurement conditions:
 - Measurement through the tank top, if appropriate to the application
 - Condensation on the plastic ceiling
 - In outdoor facilities, water and snow on vessel top possible

NivoRadar[®]

Continuous level measurement

Series NR 4100

Adjustment menu

- Further recommendations
 - When measuring through the tank ceiling, false signal suppression via the operating tool
 - When measuring through the tank top in outdoor areas protective roof for the measuring point

Transportable plastic tank (IBC)

- Process/measurement conditions:
 - Material and thickness different
 - Measurement through the vessel top, if appropriate to the application
 - Changed reflection conditions as well as jumps in measured values when changing vessels
- Further recommendations
 - When measuring through the tank ceiling, false signal suppression via the operating tool
 - When measuring through the tank top in outdoor areas protective roof for the measuring point

Gauge measurement in waters

- Process/measurement conditions:
 - Slow gauge change
 - Extreme damping of output signal in case of wave generation
 - Ice and condensation on the antenna possible
 - Floating debris sporadically on the water surface

Demonstration

- Applications that are not typical level measurements, e.g. device tests
 - Instrument demonstration
 - Object recognition/monitoring
 - Fast position changes of a measuring plate during functional test

Application - bulk solid

With "Bulk solid", the applications are based on the following features, to which the measuring characteristic of the sensor is adjusted in particular:

Silo (slender and high)

- Process/measurement conditions:
 - Interfering reflections due to weld seams on the vessel
 - Multiple echoes/diffuse reflections due to unfavourable pouring positions with fine grain
 - Varying pouring positions due to outlet funnel and filling cone
- Further recommendations
 - False signal suppression via the operating tool
 - Alignment of the measurement to the silo outlet

NivoRadar[®]

Continuous level measurement

Series NR 4100

Adjustment menu

Bunker (large-volume)

- Process/measurement conditions:
 - Large distance to the medium
 - Steep angles of repose, unfavourable pouring positions due to outlet funnel and filling cone
 - Diffuse reflections due to structured vessel walls or internals
 - Multiple echoes/diffuse reflections due to unfavourable pouring positions with fine grain
 - Changing signal conditions when large amounts of material slip off
- Further recommendations
 - False signal suppression via the operating tool

Heap (point measurement/profile detection)

- Process/measurement conditions:
 - Measured value jumps, e.g. through heap profile and traverses
 - Large angles of repose, varying pouring positions
 - Measurement near the filling stream
 - Sensor mounting on movable conveyor belts

Crusher

- Process/measurement conditions:
 - Measured value jumps and varying pouring positions, e.g. due to truck filling
 - Fast reaction time
 - Large distance to the medium
 - Interfering reflections from fixtures or protective devices
- Further recommendations
 - False signal suppression via the operating tool

Demonstration

- Applications that are not typical level measurements
 - Instrument demonstration
 - Object recognition/monitoring
 - Measured value verification with higher measuring accuracy with reflection without bulk solids, e.g. via a measuring plate

Series NR 4100 Technical information / Instruction manual

Diagnostics and servicing

Maintenance

Maintenance

If the device is used properly, no special maintenance is required in normal operation.

Precaution measures against buildup

In some applications, buildup on the antenna system can influence the measuring result. Depending on the sensor and application, take measures to avoid heavy soiling of the antenna system. If necessary, clean the antenna system in certain intervals.

Cleaning

The cleaning helps that the type label and markings on the instrument are visible.

Take note of the following:

- Use only cleaning agents which do not corrode the housings, type label and seals
- Use only cleaning methods corresponding to the housing protection rating

Rectify faults

Reaction when malfunction occurs

The operator of the system is responsible for taking suitable measures to rectify faults.

Causes of malfunction

The device offers maximum reliability. Nevertheless, faults can occur during operation. These may be caused by the following, e.g.:

- Sensor
- Process
- Voltage supply
- · Signal processing

Fault rectification

The first measures are:

- Evaluation of fault messages
- Checking the output signal
- Treatment of measurement errors

A smartphone/tablet with the adjustment app offer you further comprehensive diagnostic possibilities. In many cases, the reasons can be determined in this way and faults rectified.

Reaction after fault rectification

Depending on the reason for the fault and the measures taken, the steps described in chapter "Setup" must be carried out again or must be checked for plausibility and completeness.

Technical information / Instruction manual

Diagnostics and servicing

Diagnosis, fault messages

4 ... 20 mA signal

Connect a multimeter in the suitable measuring range according to the wiring plan. The following table describes possible errors in the current signal and helps to eliminate them:

Error	Cause	Rectification
4 20 mA signal not stable	Fluctuating measured value	Set damping
4 20 mA signal missing	Electrical connection faulty	Check connection, correct, if necessary
	Voltage supply missing	Check cables for breaks; repair if necessary
	Operating voltage too low, load resistance too high	Check, adapt if necessary
Current signal greater than 22 mA, less than 3.6 mA	Sensor electronics defective	Replace device or send in for repair depending on device version

Status messages according to NE 107

The instrument features self-monitoring and diagnostics according to NE 107 and VDI/VDE 2650. In addition to the status messages in the following tables there are more detailed error messages available under the menu item "Diagnostics" via the respective adjustment module.

Status messages

The status messages are divided into the following categories:

- Failure
- Function check
- Out of specification
- Maintenance required

and explained by pictographs:

Fig. 23: Pictographs of the status messages

- 1 Failure red
- 2 Out of specification yellow
- 3 Function check orange
- 4 Maintenance required blue

Continuous level measurement

Series NR 4100

Diagnostics and servicing

Malfunction (Failure):

Due to a malfunction in the instrument, a fault signal is out-

This status message is always active. It cannot be deactivated by the user.

Function check:

The instrument is being worked on, the measured value is temporarily invalid (for example during simulation).

This status message is inactive by default.

Out of specification:

The measured value is unreliable because an instrument specification was exceeded (e.g. electronics temperature).

This status message is inactive by default.

Maintenance required:

Due to external influences, the instrument function is limited. The measurement is affected, but the measured value is still valid. Plan in maintenance for the instrument because a failure is expected in the near future (e.g. due to buildup).

This status message is inactive by default.

Failure

Code Text message	Cause	Rectification	DevSpec State in CMD 48
F013 no measured val- ue available	No measured value in the switch-on phase or during operation	Check or correct installation and/or parameter settings Clean the antenna system	Byte 5, Bit 0 of Byte 0 5
F017 Adjustment span too small	Adjustment not within specification	Change adjustment according to the limit values (difference between min. and max. ≥ 10 mm)	Byte 5, Bit 1 of Byte 0 5
F025 Error in the line- arization table	Index markers are not continuously rising, for example illogical value pairs	Check linearization table Delete table/Create new	Byte 5, Bit 2 of Byte 0 5
F036 No operable soft- ware	Checksum error if software update failed or aborted	Repeat software update Send instrument for repair	Byte 5, Bit 3 of Byte 0 5
F040 Error in the electronics	Limit value exceeded in signal processing Hardware error	Restart instrument Send instrument for repair	Byte 5, Byte 5, Bit 4 of Byte 0 5
F080 General software error	General software error	Restart instrument	Byte 5, Byte 5, Bit 5 of Byte 0 5

Diagnostics and servicing

Code Text message	Cause	Rectification	DevSpec State in CMD 48
F105 Determine meas- ured value	The instrument is still in the switch-on phase, the measured value could not yet be determined	Wait for the end of the switch-on phase Duration up to 3 minutes depending on the measurement environment and parameter settings	Byte 5, Byte 5, Bit 6 of Byte 0 5
F260 Error in the cali- bration	Checksum error in the cali- bration values Error in the EEPROM	Send instrument for repair	Byte 4, Bit 0 of Byte 0 5
F261 Error in the in- strument settings	Error during setup False signal suppression faulty Error when carrying out a re- set	Repeat setup Carry out a reset	Byte 4, Bit 1 of Byte 0 5
F265 Measurement function dis- turbed	Program sequence of the measuring function disturbed	Device restarts automatically	Byte 4, Bit 3 of Byte 0 5

Function check

Code Text message	Cause	Rectification	DevSpec State in CMD 48
C700 Simulation active	A simulation is active		"Simulation Active" in "Stand- ardized Status 0"

Out of specification

Code Text message	Cause	Rectification	DevSpec State in CMD 48
S600 Impermissible electronics tem- perature	Temperature of the electronics in the non-specified range	Check ambient temperature Insulate electronics	Byte 23, Bit 4 of Byte 14 24
S601 Overfilling	Danger of vessel overfilling	Make sure that there is no further filling Check level in the vessel	Byte 23, Bit 5 of Byte 14 24
S603 Impermissible operating voltage	Terminal voltage too small	Check terminal voltage, increase operating voltage	Byte 23, Bit 6 of Byte 14 24

Technical information / Instruction manual

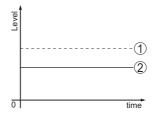
Diagnostics and servicing

Maintenance

			ı
Code	Cause	Rectification	DevSpec
Text message			State in CMD 48
M500	The data could not be restored during the reset to	Repeat reset	Bit 0 of Byte 14 24
Error in the delivery status	delivery status	Load XML file with sensor data into the sensor	Dyte 14 24
M501	Hardware error EEPROM	Send instrument for repair	Bit 1 of
Error in the non-active line-arization table			Byte 14 24
M507	Error during setup	Carry out reset and repeat	Bit 7 of Byte 14 24
Error in the in- strument settings	Error when carrying out a reset	en carrying out a re-	
	False signal suppression faulty		
M508	Checksum error in Bluetooth	Carry out software update	Bit 8 of
No executable Bluetooth soft- ware	software		Byte 14 24
M509	Software update running	Wait until software update is	Bit 9 of
Software update running		finished	Byte 14 24
M510	Communication between	Check the connection cable	Bit 10 of
No communi- cation with the main controller	main electronics and display module disturbed	to the display Send instrument for repair	Byte 14 24
M511	A software unit requires a	Carry out software update	Bit 11 of
Inconsistent software configuration	software update		Byte 14 24

Treatment of measurement errors

The tables below give typical examples of application-related measurement errors.


The images in column "Error description" show the actual level as a dashed line and the output level as a solid line.

Technical information / Instruction manual

Diagnostics and servicing

- 1 Real level
- 2 Level displayed by the sensor

i

Note:

If the output level is constant, the cause could also be the fault setting of the current output to "Hold value".

If the level is too low, the reason could be a line resistance that is too high

Liquids: Measurement error at constant level

Fault description	Cause	Rectification
Measured value shows a too low or too high level	Min./max. adjustment not correct	Adapt min./max. adjustment
5	Incorrect linearization curve	Adapt linearization curve
Measured value jumps to- wards 100 %	Due to the process, the amplitude of the level echo sinks	Carry out a false signal suppression
	A false signal suppression was not carried out	
ST SING	Amplitude or position of a false signal has changed (e.g. condensation, buildup); false signal suppression no longer matches actual conditions	Determine the reason for the changed false signals, carry out false signal suppression, e.g. with condensation.

Technical information / Instruction manual

Diagnostics and servicing

Liquids: Measurement error during filling

Fault description	Cause	Rectification
Measured value remains unchanged during filling	False signals in the close range too big or level echo too small	Eliminate false signals in the close range
D Some	Strong foam or vortex generation Max. adjustment not correct	Check measuring point: Antenna should protrude out of the thread- ed mounting socket, possible false echoes through flange socket?
		Remove contamination on the antenna
		In case of interferences due to installations in the close range, change polarisation direction
		Create a new false signal suppression
		Adapt max. adjustment
Measured value jumps to- wards 0 % during filling	The level echo cannot be distinguished from the false signal at a false signal position (jumps to multiple echo)	In case of interferences due to installations in the close range: Change polarisation direction Chose a more suitable installation position
Measured value jumps to- wards 100 % during filling	Due to strong turbulence and foam generation during filling, the am- plitude of the level echo sinks. Measured value jumps to false sig- nal	Carry out a false signal suppression
Measured value jumps sporadically to 100 % during filling	Varying condensation or contami- nation on the antenna	Carry out a false signal suppression or increase false signal suppression with condensation/contamination in the close range by editing
Measured value jumps to ≥ 100 % or 0 m distance	Level echo is no longer detected in the close range due to foam gen- eration or false signals in the close range. The sensor goes into over- fill protection mode. The max. level (0 m distance) as well as the sta- tus message "Overfill protection" are output.	Check measuring point: Antenna should protrude out of the thread- ed mounting socket, possible false echoes through flange socket? Remove contamination on the an- tenna

Series NR 4100
Technical information / Instruction manual

Diagnostics and servicing

Liquids: Measurement error during emptying

Fault description	Cause	Rectification
Measured value remains unchanged in the close range during emptying	False signal larger than the level echo Level echo too small	Check measuring point: Antenna should protrude out of the thread- ed mounting socket, possible false echoes through flange socket?
		Remove contamination on the antenna
ō I sma		In case of interferences due to installations in the close range: Change polarisation direction
		After eliminating the false signals, the false signal suppression must be deleted. Carry out a new false signal suppression
Measured value jumps sporadically towards 100 % during emptying	Varying condensation or contami- nation on the antenna	Carry out false signal suppression or increase false signal suppression in the close range by editing With bulk solids, use radar sensor with purging air connection

Bulk solids: Measurement error at constant level

Fault description	Cause	Rectification
Measured value shows a too low or too high level	Min./max. adjustment not correct	Adapt min./max. adjustment
	Incorrect linearization curve	Adapt linearization curve
Measured value jumps to- wards 100 %	Due to the process, the amplitude of the product echo decreases	Carry out a false signal suppression
	A false signal suppression was not carried out	
	Amplitude or position of a false signal has changed (e.g. condensation, buildup); false signal suppression no longer matches actual conditions	Determine the reason for the changed false signals, carry out false signal suppression, e.g. with condensation.

Continuous level measurement

Technical information / Instruction manual

Diagnostics and servicing

Bulk solids: Measurement error during filling

Fault description	Cause	Rectification
Measured value jumps to- wards 0 % during filling	The level echo cannot be distinguished from the false signal at a false signal position (jumps to multiple echo)	Remove/reduce false signal: min- imize interfering installations by changing the polarization direction Chose a more suitable installation position
	Transverse reflection from an ex- traction funnel, amplitude of the transverse reflection larger than the level echo	Direct sensor to the opposite fun- nel wall, avoid crossing with the filling stream
Measured value fluctuates around 10 20 %	Various echoes from an uneven medium surface, e.g. a materi- al cone	Check parameter "Material Type" and adapt, if necessary Optimize installation position and sensor orientation
	Reflections from the medium surface via the vessel wall (deflection)	Select a more suitable installation position, optimize sensor orientation, e.g. with a swivelling holder
Measured value jumps sporadically to 100 % during filling	Changing condensation or contamination on the antenna	Carry out a false signal suppression or increase false signal suppression with condensation/contamination in the close range by editing

Bulk solids: Measurement error during emptying

Fault description	Cause	Rectification
Measured value remains un- changed in the close range during emptying	False signal greater than level echo or level echo too small	Eliminate false signals in the close range. Check: Antenna must protrude out of the nozzle
lwaj		Remove contamination on the antenna
81 Street		Minimize interfering installations in the close range by changing the polarization direction
		After eliminating the false signals, the false signal suppression must be deleted. Carry out a new false signal suppression

Diagnostics and servicing

Fault description	Cause	Rectification
Measured value jumps spo- radically towards 100 % during emptying	Changing condensation or contamination on the antenna	Carry out false signal suppression or increase false signal suppression in the close range by editing
3		
Measured value fluctuates around 10 20 %	Various echoes from an uneven medium surface, e.g. an extraction funnel	Check parameter "Material Type" and adapt, if necessary
	Reflections from the me- dium surface via the vessel wall (deflection)	Optimize installation position and sensor orientation

How to proceed if a repair is necessary

If a repair should be necessary, please contact your contact person.

Dismount

Dismounting steps

To remove the device, carry out the steps in chapters "Mounting" and "Connecting to power suplly" in reverse.

Warning:

When dismounting, pay attention to the process conditions in vessels or pipelines. There is a risk of injury, e.g. due to high pressures or temperatures as well as aggressive or toxic media. Avoid this by taking appropriate protective measures.

Disposal

Pass the instrument on to a specialised recycling company and do not use the municipal collecting points.

Remove any batteries in advance, if they can be removed from the device, and dispose of them separately.

If personal data is stored on the old device to be disposed of, delete it before disposal.

If you have no way to dispose of the old instrument properly, please contact us concerning return and disposal.

Supplement

Licensing information for open source software

Open source software components are also used in this device. A documentation of these components with the respective license type, the associated license texts, copyright notes and disclaimers can be found on our homepage.

Trademark

All the brands as well as trade and company names used are property of their lawful proprietor/originator.

Printing date:

All statements concerning scope of delivery, application, practical use and operating conditions of the sensors and processing systems correspond to the information available at the time of printing.

Subject to change without prior notice

Technical support

Please contact your local sales partner (address at www.uwtgroup.com). Otherwise please contact us:

UWT GmbH Westendstraße 5 87488 Betzigau Germany

Phone + 49 (0) 831 57 123 0 info@uwtgroup.com www.uwtgroup.com